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Abstract

A modified version of the differential quadrature method is applied to two versions of the sixth-order differential
equation of motion governing free in-plane inextensional vibrations of circular arches (see Henrych, 1981).

All the boundary conditions can be imposed exactly, without introducing & points (see e.g. Bert and Malik, 1996).
Consequently, the results are calculated with high precision, and a comparison between exact and approximate
frequencies becomes possible.

The convergence rate of the discretization method is shown to be very fast, even for the higher eigenvalues, so
that a small number of Lagrangian coordinates permits a good approximation to the true results. It is shown that
the approximate formulation leads to noticeable errors for the first frequencies of deep arches, whereas shallow
arches and higher-order frequencies can be safely calculated with the simplified approach.

The paper ends with some tables in which the first ten free vibrations frequencies for clamped arches, two-hinged
arches and cantilever arches are compared with some known results from the literature. © 1999 Elsevier Science
Ltd. All rights reserved.

1. Introduction

Let us consider the circular arch in Fig. 1, with radius R, opening angle 6), Young’s modulus F,
cross-sectional area, 4, moment of inertia /7 and distributed mass pu.

The dynamic analysis of this structure, in the presence of shear deformation and rotary inertia, leads
to complicated governing equations, especially if the arch axis is considered to be extensible.

On the other hand, the effects of shear deformation and rotary inertia can be safely neglected, if the
arch is considered to be thin, and in this case the equation of motion can be expressed as (cf Henrych,
1981):
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Fig. 1. The structural system under investigation.
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where v = v(0, ), and with a similar equation for the other displacement component.
Moreover, if the arch axis is considered to be inextensible, the previous equation becomes:

0% *v 3% ,uR4[ a*p 820] _ 0

— | = — — 2
ae6+ ae4+392+ EI [ 50?92 922 )

Finally, another simplifying assumption can be introduced by neglecting the tangential inertial forces
expressed by the last term of the previous equation:

3% ot 9% uR* 3%

42—+ — =0 3
30° 30" 90> EI 9607 912 ®)

It is intuitively clear that the above introduced hypothesis is reasonable for shallow arches, whereas for
steep arches it can lead to significant errors. Some numerical results reported in Henrych (1981), p. 186,
confirm this statement.

In the following, the attention will be restricted to eqn (2) (henceforth ‘exact equation’) and eqn (3)
(henceforth ‘approximate equation’).

Quite recently (see Kang et al., 1996), eqn (2) has been solved by using the differential quadrature
method (henceforth DQM), and some preliminary results have been given for clamped arches and
simply supported arches. The analysis was restricted to the fundamental frequency, and, moreover, the
boundary conditions were imposed by using the approximate double 6 method.

More recently, a new procedure was proposed for fourth-order equations by Wang et al. (1993) and
by Chen et al. (1997), which allow the exact satisfaction of all the four boundary conditions, and a
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straight-forward generalization was proposed for the same systems (see De Rosa and Franciosi, 1998a),
even in the presence of nonclassical boundary conditions (De Rosa and Franciosi, 1998b).

In this paper the above-mentioned approach is extended to sixth-order equations, so enabling the
analysis of arbitrary boundary conditions and the calculation of the higher frequencies. Clamped arches,
double-hinged arches and cantilever arches are treated in detail, but the procedure remains valid for
other kinds of constraints, and the first ten frequencies are calculated for various opening angles.

The numerical results are compared with two different exact approaches, developed by Henrych
(1981) and Wassermann (1997), and with some other numerical methods such as finite elements and cell
discretization method (see Auciello and De Rosa, 1984).

It will be seen that the results are quite satisfactory, even for very deep arches, so confirming the
efficiency of DQM in comparison with other numerical techniques.

2. The structural system

The boundary conditions which will be considered in the following are expressed by:

v 9’
A. Clamped end —v = 8_2 = a_glz) =
a 3
B. Supported end —v = 8—; = 8—62 =0
C. Free end —SM=T=N=0 “4)

where M, T and N are the bending moment, the shear force and the normal force, respectively, and can
be expressed as:

EI[3%0(0,1) dv(0, z)]
M ==
0.0 =-4 [ Py:E 50
EITd%*(0, 1) 9%v(6, z)}
10.0= _F[ 20" 20
EIT3%50(0, 1)  d%u(8, z)} 93u(6, 1)
NGO, t) = — -~ 5
0,1 R3[ Y 0 hoan ®)
By assuming a solution of the form:
v(0, 1) = v(0)f (1) (6)
with f(f) harmonic function with frequency w, the exact differential equation of motion becomes:
a%(0)  _9*w(0) 98%0(0) uR*w? [821)(9) i|
+2 + = —v(0) 7
90° 30 30* EI [ 36 @)

with a similar expression for the approximate equation.
It is now convenient to map the physical domain [0, 6y] onto the natural Gaussian domain [—1, 1], by
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means of the transformation:

0
&) = 2(9—()) -1 ®)

where ¢ is called the natural coordinate.
It follows that the differential eqn (7) becomes:

64 3% 32 9%v(¢ 4 9%v(é) 4 3%p(&) .
% (5) o (4') o (2 =@ 5—5 —ud) ©
0, 9¢ 0, 9¢ 0, 9¢& 0y 9¢
where:
2R4
EI
is the nondimensional frequency.
It is possible to define the couple of differential operators:
64 3% 329* 4 9?
L= st aratas (11)
0 9 0, 9 0y 0&
and:
2
A (12)
0y 9¢
where .# is the identity operator.
Finally, the boundary value problem can be expressed as:
Pv=Q* My (13)

with the appropriate six boundary conditions.

3. The discretization method

According to the DQM, the first step toward the numerical solution of the above derived boundary
value problem is to divide the natural interval into n segments defined by means of n + 1 points located
at the abscissae &y, &o,. .., &,q1-

Then, the following set of (n + 11) nodal unknowns is defined:

T _ / " " " " i " " " n
d' = {1)1, o1, 01, 01 01" 0" 00, 0 O O O O } (14)

and the displacement v(£) of the beam is approximated as:

n+11

U(f) =aC = ZOC,’C,’ (15)
=1

L

where o is a row vector of monomials, and C is a column vector of Lagrangian coordinates.
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Two choices of monomials arise quite naturally from the discretization procedure, i.e. o, = &' and
o; = Ti—1(&), where T;(€) is the Chebyshev polynomials of the first kind (see Bert and Malik, 1996).
In the first case the sampling points are uniformly distributed along the natural interval:

20—1) —
fizu; i=1,2,...,n+1 (16)

n

In the second case the sampling points will be conveniently located at the so-called Gauss—Lobatto—
Chebyshev points:

f,-:—cos(n(i;l)); i=1,2,....n+1 (17)

From eqn (15) it is easily seen that:
W@ =a?C; i=1,....5 (18)

and therefore:

d={ 1C=NC (19)

an+l

"

"

n+1

Following the same approach as in Chen et al. (1997), we define the weighting coefficients of the first
sixth derivatives, as follows:

A=NN;'; B=AA; C=AAA
D =AAAA; E =AAAAA; F=AAAAAA (20)

This discretized version of eqn (13) is given by:
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Ly Lip ... Ly V|
Ly, Ly, ... Loy vy
Ls; Ly, ... Lygn vy
Ly, Lip ... Lagpin v”
Ls Lsp, ...  Lsu "
Le, Lep ... Leutun v
Ly, Ly, ... Ly, )
| Lot Lovniz oo Lugiiasn || Ve
_ L @1)
M, My, ... M V1
M> M>r ... Mg vy
M3 Mzr ... Mz vy
My, Mss ... Maun vy’
_o| Msa Ms, ... Ms,n v”
M, Msy ... Mesun "
M7, M7y .. Mg 02
| My Muinn oo Mugigsn || vat |
where the matrices L and M are the discretized version of the differential operators ¥ and .#:
L[j:§ﬂj+%Dij+%B[/ i,j:1,2,...,n+11 (22)
0 0 0
4 .
Mij:?B[/_éi/ l,(]=1,2,...,71+11 (23)
0

where §; is the well-known Kronecker operator, and should be neglected if the approximate solution
has to be used.

4. The boundary conditions

Let us consider first the clamped arch, for which the six boundary conditions are expressed as:

av BED)
—1)=— = — =
(== et 002 lo_
v 3%v
=2 20 24
v 30 [g=1 90 lo=1 @

In order to impose these conditions, it is convenient to interchange the rows (and columns) (n + 6),
(n + 7) and (n + 8) of the matrices L and M with the fourth, fifth and sixth rows (and columns), so
that it is possible to write:
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Ly Lu\(%) (M Ma> v>
-0 pp Vi P 25
(Lap Laa ) <Va Map M., Va 25)

where v;, is the vector of the passive coordinates:
T _ o l "
v, = (v1 0] O] Va1 Upyy Unyy) (26)
and v, is the vector of the active coordinates:

T _ me e m m
Va _(UZ U3 ... Up Uy Uy Upyy Uyyg Un-&—l) 27)

It is easy to realize that the modified system:

I 0 A7 0 0 0
(Lap Laa><VZ):Q2<MaP Maa)(Va> (28)

satisfies exactly all the boundary conditions:
Moreover, the above derived system can be solved very easily, because it suffices to calculate the
eigenvalues of the reduced system:

LaaVy = Q*M,,v, (29)

The hinged-hinged arch is defined by the boundary conditions:

av 3%
1) == - =
U( ) 80 0=—1 803 0=—1
o(l) = ol _ Ziv =0 (30)
T 30—y 903 1o=1

and can be treated quite similarly to the clamped case.
In fact, the passive coordinates are now given by:

T ’ noor "
Yo = (U1 o] Vit 0" vy ) (31)
whereas the vector of the active coordinates is equal to:
T __ nomre o n AN mn
Vo= (02 03 ool o oy o v o) (32)

Therefore, the rows (and columns) (n+6), (n+7) and (n+9) of the matrices L and M should be
interchanged with the third, fifth and sixth rows (and columns).

Even in this case it suffices to solve the reduced system (29) of order n + 5.

The cantilever arch poses some additional problem, due to the presence of the ecigenvalue in the
boundary conditions. Actually, the clamped-free arch is defined by [see eqn (5)]:

av 3%v
—-1)=— = — = 33
D( ) 80 0=—1 802 0=—1 ( )
ov 4 33 9%v 4 3%
ol el =00 | s =0 34
30 [p— 05 90° lo=1 307 lo=1 05 90% lo=1 G4
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3% 05 8%v 503 9v

30° 0:1+2w o=t 1630 (35)
so that it seems convenient to choose the following passive coordinates:

Vg = (01 o1 0] vy vl 0)) (36)
and consequently:

Vo = (02 03 oo vupr 0 0" vy ol ") (37)

Rows (and columns) (n + 7), (n + 8) and (n + 11) of the matrices L. and M should be interchanged
with the fourth, fifth and sixth rows (and columns). In addition, (see eqn (25)) matrix L,, will be given
by the identity matrix, as before, but matrix L, will contain the nonzero terms:

4 4 02
Lpa(dn+9) = 557 Lu(5.n+10) = 55 Ly(6,0+9) = ! (38)
0 0
and the matrix M,,, will contain the single nonzero term:
04
M,,(6, 4) = % 39)

The simplest way to solve the resulting system seems to invert the complete (n + 11,7+ 11) L matrix
and to find the eigenvalues of the matrix L™'M. After disregarding the zero eigenvalues, the frequencies
can be found as the inverse of the eigenvalues.

5. Numerical results
A small Mathematica notebook was written (see Wolfram, 1991), following closely the above

developed theory. All the numerical approximations were ruled out until the eigenvalues calculations, so
minimizing the potential source of numerical instabilities.

Table 1

Convergence study for a cantilever circular arch with opening angle 6, = 180°. Exact
theory

Q? n=>5 n=10 n=15 n =20

oH 0.4351587 0.4351653 0.4351653 0.4351653
Q3 1.3749781 1.3749865 1.3749865 1.3749865
Q 4.7085858 4.7090534 4.7090534 4.7090534
Q? 10.459782 10.515076 10.515099 10.515099
ol 18.391839 18.392165 18.392166
Q 28.374614 28.334995 28.335013
Q2 40.456956 40.292906 40.292191
o 52.153273 54.278495 54.266250
Q} 70.102498 70.245294

Q) 87.397703 88.210740
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Shallow clamped arches. Approximate theory

1111

Q? 0y =20° 0o =40° 0 =80°

Henrych DQM Henrych DQM Henrych DQM
o 505.404 505.404 125.792 125.792 30.894 30.894
(0); 910.100 910.100 226.910 226.910 56.114 56.114
Q3 1639.391 1639.391 409.204 409.204 101.658 101.658
Q2 2374.823 2374.823 593.043 593.043 147.598 147.598
Q2 3421.348 3421.348 854.661 854.661 219.989 219.989
Q2 4483.458 4483.458 1120.178 1120.178 279.358 279.358
Q3 5851.325 5851.321 1462.137 1462.136 364.841 364.840
(oh 7238.872 7239.000 1809.018 1809.050 451.555 451.563
Q} 8929.311 8931.596 2231.623 2232.194 557.201 557.344
Q3 10,641.755 10,616.440 2659.730 2653.402 664.224 662.642
Table 3
Deep clamped arches. Approximate theory
o’ 0,=120° 0o=160° 0,=180°

Henrych DQM Henrych DQM DQM

Q3 13.328 13.3281 7.190 7.18982 5.53832
(o) 24.488 24.4888 13.423 13.4234 10.4393
Q2 44.707 44.7068 24.775 24.7755 19.3980
(o) 65.109 65.1089 36.239 36.2388 28.4488
Q? 94.161 94.1614 52.572 52.5723 41.3501
Q2 123.651 123.651 69.154 69.1543 54.4489
Q3 161.638 161.638 90.517 90.517 71.3258
Q} 200.173 200.177 112.189 112.191 88.4496
Q} 247.123 247.187 138.596 138.632 109.339
Q3 294.686 293.983 165.348 164.952 130.135

In order to check the exactness of the proposed approach, and the convergence rate of the method, let
us consider a cantilever arch with opening angle 6y = n. In Table 1 the first nondimensional frequencies
are reported, using the monomials o; = &1 and four different discretization levels. In the first column
the arch was divided into n = 5 segments, identified by n+ 1 = 6 equally spaced points. Consequently,
an eigenvalue problem of order n+ 11 = 16 has been solved. In the other columns, the arch has been
divided into 10, 15 and 20 segments, respectively.

As can be seen, the first three frequencies are well approximated even for the coarse discretization,
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Table 4
Shallow clamped arches. Exact theory

Q? 0p=20° 0o =40° 0o=180°
Henrych DQM Henrych DQM Henrych DQM

Q% 504.71254 503.54975 125.13412 123.97643 30.35434 29.21752
(o) 910.35841 909.14513 227.17462 225.96257 56.40168 55.19468
Q3 1638.49717 1637.2585 408.34864 407.11089 100.93967 99.70548
Qﬁ 2375.04899 2373.7926 593.27251 592.01656 147.84397 146.58936
Q§ 3420.37593 3419.10786 853.73153 852.46392 212.21124 210.94480
Qg 4482.39181 1119.11574 278.31116
Q% 5849.02420 1459.88596 362.75072
Q§ 7237.91268 1807.96683 450.49406
Q} 8929.26520 2229.91209 555.22808
Q%O 10,615.3320 2652.29756 661.55269
Table 5

Deep clamped arches. Exact theory

o’ 0p=120° 0p=160° 0,=180°
Henrych DQM Henrych DQM Archer DQM

Qf 12.94860 11.84758 6.97826 5.927444 4.3841 4.384430
(o) 24.81030 23.61261 13.78714 12.60396 9.651897
Q% 44.16960 42.94082 24.42701 23.20534 17.92179
Qﬁ 65.38026 64.12795 36.54238 35.29352 27.52389
Qg 93.57901 92.31426 52.18717 50.92456 39.79536
Qf, 122.62793 68.16142 53.47322
Q% 159.75261 88.83522 69.73749
Q§ 199.13032 111.17408 87.44824
QS 245.28043 136.93164 107.73308
Q%O 292.91630 163.91439 129.11257

and the first five frequencies remain unchanged for the two finest discretization levels. In the following,
all the examples will be given for n = 20, even because the computational effort is negligible.

In Tables 2-5 the clamped arches are examined. More precisely, Tables 2 and 3 refer to the
approximate theory, whereas Tables 4 and 5 contain the frequencies as given by the exact theory. It is
worth noting that the difference between these two approaches reduces to neglect the identity operator
in eqn (12), or, equivalently, the Kronecker delta in eqn (23).

The first ten nondimensional free vibration frequencies were calculated for six different opening
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Table 6
Shallow two-hinged arches. Approximate theory
Q? 0y =20° 0 =40° 0 =80°

Henrych DQM Henrych DQM Henrych DQM
Q% 323.000 323.000 80.000 80.000 19.250 19.250
(o) 690.898 690.898 172.005 172.005 42.283 42.283
Q3 1295.000 1295.000 323.000 323.000 80.000 180.000
Qﬁ 1988.835 1988.835 496.470 496.470 123.379 123.379
Q? 2915.000 2915.000 728.000 728.000 181.250 181.250
Qé 3933.560 3933.559 982.646 982.646 244917 244917
Q% 5183.000 5182.980 1295.000 1294.995 323.000 322.999
Q§ 6525.941 6526.645 1630.739 1630.915 406.938 406.982
Q} 8099.000 8106.193 2024.000 2025.799 505.250 505.700
Q%O 9766.176 9685.260 2440.797 2420.5627 609.452 604.388
Table 7
Deep two-hinged arches. Approximate theory
Q? 0p=120° 0p=160° 0o = 180°

Henrych DQM Henrych DQM DQM

Q% 8.000 8.000 4.063 4.063 3.000
Qg 18.261 18.261 9.855 9.855 7.588
Qg 35.000 35.000 19.250 19.250 15.000
Q 54.288 54.288 30.107 30.107 23.582
(0 80.000 80.000 44.563 44.563 35.000
Qg 108.301 108.301 60.485 60.485 47.583
Q% 143.000 142.999 80.000 80.000 63.000
Q§ 180.309 180.328 100.988 100.999 79.593
Q} 224.000 224.200 125.563 125.676 99.090
Q%O 270.314 268.060 151.615 150.345 118.580

angles, from 0y =20° to 6y =180°, and the results are compared, wherever possible, with the
eigenvalues reported by Henrych (1981).
It is possible to draw the following conclusions:

e for the approximate theory, the discrepancies between the Henrych values and the DQM results are

negligible, even for the higher frequencies;

e for the exact theory, the agreement is less satisfactory. We suspect that the numerical approximate
procedure used in Henrych (1981), p. 185 was not precise enough in calculating the roots of the
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Table 8
Shallow two-hinged arches. Exact theory

Q? 0o =20° 0o =40° 0y =80°

Henrych DQM Henrych DQM Henrych DQM
o 322.84610 321.51482 79.88299 78.55804 19.26240 17.96407
(o) 691.34784 690.04207 172.46258 171.15800 42.76714 41.46761
Q3 1294.84289 1293.51005 322.87042 321.53908 79.96697 78.64105
Q2 1989.30118 1987.97806 496.94001 495.61730 123.86315 122.54186
Q2 2914.84270 2913.50952 727.86936 726.53690 181.21200 179.88186
Q2 3932.70542 981.79510 244.0783
Q3 5181.48967 1293.5317 321.6289
(o5 6525.79373 1630.0663 406.1437
Q} 8104.68636 2024.3199 504.3162
Q3 9684.45635 2419.7613 603.5950
Table 9
Deep two-hinged arches. Exact theory
o’ 0p=120° 0o=160° 0o=180°

Henrych DQM Henrych DQM Wasserman DQM
(oh 8.17865 6.92676 4.27735 3.21790 2.267 2.26674
(0); 18.78599 17.49631 10.42841 9.15470 6.9233
(0 35.09216 33.77403 19.47019 18.16166 13.9777
o 54.79465 53.47580 30.64156 29.32637 22.8196
(0): 80.07961 78.75260 44.75928 43.43584 33.9295
Q? 107.47993 59.68744 46.7979
Q3 141.74693 78.86248 61.9154
Q? 179.50481 100.19542 78.8002
Q} 222.93466 124.52468 97.9907
Q3 267.27878 149.57948 117.824

frequency equations. In fact, the fundamental frequency of the semicircular arch (6, = 180°) as given
by Archer (1960) agrees quite well with the DQM prediction. Other examples can be found in the
literature (see Kang et al., 1996; Nelson, 1962);
e a comparison between the frequencies given by the approximate theory and the frequencies predicted
by the exact theory shows that the errors grow with the deepness of the arch.

Moreover, the discrepancies seem to be larger than the relative errors given in Henrych (1981). Tables
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Table 10
Shallow cantilever arches. Approximate theory

Q? 0y =20° 0o =40° 0o =80°
Henrych DQM Henrych DQM Henrych DQM

o 29.101 29.101 7.462 7.462 2.064 2.064
(0); 180.235 180.235 44.611 44.611 10.721 10.721
Q3 505.606 505.606 125.845 125.845 30.910 30.910
Q2 991.426 991.426 247.243 247.243 61.200 61.200
Q2 1639.392 1639.392 409.204 409.204 101.658 101.658
Q2 2449.366 2449.366 611.678 611.678 152.257 152.257
Q3 3421.348 3421.348 854.661 854.661 212.989 212.989
(o5 4555.335 4555.354 1138.147 1138.152 283.851 283.852
Q} 5851.325 5851.237 1462.137 1462.115 364.841 364.835
Q3 7309.317 7304.265 1826.630 1825.366 455.958 455.641

6-9 contain the first frequencies of the two-hinged arch, in the same order as described for the clamped
case. The same conclusions can also be drawn.

Finally, the cantilever arch is examined in Tables 10—12. No comparison is made for the exact theory,
because the higher frequencies are not reported elsewhere, and the fundamental frequency agrees
completely with the exact eigenvalue.

If the opening angle 0, exceeds 7, then, strictly speaking, we are not examining ‘circular arches’, but
‘circular ring segments’. Nevertheless, the differential quadrature method can treat such systems without
any significant difference.

As an example, the first five frequencies for some clamped, two-hinged and cantilever ring segments

Table 11
Deep cantilever arches. Approximate theory

o’ 0p=120° 0p=160° 0p=180°
Henrych DQM Henrych DQM DQM
o 1.084 1.084 0.766 0.766 0.6909
Q% 4.470 4.470 2.315 2.315 1.7489
Q§ 13.337 13.337 7.197 7.197 5.5458
Q2 26.750 26.750 14.696 14.696 11.4455
Qg 44.707 44.707 24.775 24.775 19.3980
Q2 67.180 67.180 37.404 37.404 29.3694
Q% 94.161 94.161 52.572 52.572 41.3501
Q§ 125.648 125.649 70.277 70.278 55.3366
QS 161.638 161.635 90.517 90.516 71.3247

[orN 202.130 201.989 113.290 113.210 89.2544
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Table 12
Cantilever arches. Exact theory

o’ 0y = 20° 0y = 40° 09=280° 00=120° 09=160° 6o=180°
o 28.9274 7.2857 1.8763 0.87618 0.52815 0.435165
(0); 178.3529 42.8914 9.4711 3.66368 1.82747 1.37499
Q§ 503.5454 123.9252 29.3702 12.13756 6.256133 4.70905
Qﬁ 989.2592 245.2343 59.5971 25.48599 13.67251 10.5151
Qg 1637.1669 407.1414 100.0053 43.38528 23.68263 18.3922
Qg 2447.1050 609.5860 150.5844 65.83910 36.28622 28.3350
Q3 3419.0618 852.5459 211.2980 92.80177 51.43305 40.2922
Qé 4553.0487 1136.0221 282.1508 124.27967 69.127454 54.2662
Qg 5848.9259 1459.9801 363.1295 160.26047 89.357339 70.2453
Qfo 7302.1479 1823.4022 454.0499 200.68549 112.09712 88.2107
Table 13

Ring sectors for clamped arches, two-hinged arches and cantilever arches

o’ 0o = 240° 0y = 270° 6p=330° 09 =360°
Qf Clamped 1.98249 1.39493 0.74408 0.56642
2-hinged 0.81792 0.47425 0.10129 6.3 x 1077
Cantilever 0.28558 0.24743 0.20429 0.19244
(o) Clamped 4.84947 3.58518 2.06358 1.59520
2-hinged 3.30936 2.36576 1.24164 0.90074
Cantilever 0.70139 0.54227 0.36571 0.31589
Qg Clamped 9.32007 7.04140 4.26118 3.38459
2-hinged 7.15772 5.34885 3.14174 2.44660
Cantilever 2.25392 1.63160 0.91122 0.70006
Qﬁ Clamped 14.7627 11.3383 7.10834 5.75492
2-hinged 12.1340 9.26743 5.72821 4.59667
Cantilever 5.38323 4.02917 2.38964 1.87955
Qg Clamped 21.5536 16.6663 10.6266 8.68973
2-hinged 18.3264 14.1386 8.95660 7.29296
Cantilever 9.73422 7.42214 4.58007 3.67660

are reported in Table 13. Some comparisons can be performed with the fundamental frequencies given
in Kang et al. (1996), Archer (1960), Nelson (1962) for clamped and two-hinged arches, and the
agreement is always noticeable.

The very small fundamental frequency of the simply supported complete ring should obviously be
zero, but some unavoidable numerical approximation caused this negligible inaccuracy.
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6. Conclusions

The dynamic analysis of circular arches in the presence of arbitrary constraints at the ends has been
conducted by using a version of the differential quadrature method in which all the sixth boundary
conditions can be satisfied exactly.

It is shown that the cantilever arch, where the eigenvalue appears also in the boundary conditions,
can be studied without additional efforts.

Numerical examples and comparisons for arches and ring segments show that the DQM behaves very
satisfactorily for every value of the opening angle, and a reduced number of Lagrangian coordinates
allow the calculation of the higher frequencies.

Finally, it can be noted that the computational effort is greatly reduced by using a symbolic software
(in our case, Mathematica), which also eliminated any numerical instability problems.
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