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Abstract

A modi®ed version of the di�erential quadrature method is applied to two versions of the sixth-order di�erential

equation of motion governing free in-plane inextensional vibrations of circular arches (see Henrych, 1981).
All the boundary conditions can be imposed exactly, without introducing d points (see e.g. Bert and Malik, 1996).

Consequently, the results are calculated with high precision, and a comparison between exact and approximate

frequencies becomes possible.
The convergence rate of the discretization method is shown to be very fast, even for the higher eigenvalues, so

that a small number of Lagrangian coordinates permits a good approximation to the true results. It is shown that
the approximate formulation leads to noticeable errors for the ®rst frequencies of deep arches, whereas shallow

arches and higher-order frequencies can be safely calculated with the simpli®ed approach.
The paper ends with some tables in which the ®rst ten free vibrations frequencies for clamped arches, two-hinged

arches and cantilever arches are compared with some known results from the literature. # 1999 Elsevier Science

Ltd. All rights reserved.

1. Introduction

Let us consider the circular arch in Fig. 1, with radius R, opening angle y0, Young's modulus E,
cross-sectional area, A, moment of inertia I and distributed mass m.

The dynamic analysis of this structure, in the presence of shear deformation and rotary inertia, leads
to complicated governing equations, especially if the arch axis is considered to be extensible.

On the other hand, the e�ects of shear deformation and rotary inertia can be safely neglected, if the
arch is considered to be thin, and in this case the equation of motion can be expressed as (cf Henrych,
1981):
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where u � u�y, t�, and with a similar equation for the other displacement component.
Moreover, if the arch axis is considered to be inextensible, the previous equation becomes:
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Finally, another simplifying assumption can be introduced by neglecting the tangential inertial forces
expressed by the last term of the previous equation:
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It is intuitively clear that the above introduced hypothesis is reasonable for shallow arches, whereas for
steep arches it can lead to signi®cant errors. Some numerical results reported in Henrych (1981), p. 186,
con®rm this statement.

In the following, the attention will be restricted to eqn (2) (henceforth `exact equation') and eqn (3)
(henceforth `approximate equation').

Quite recently (see Kang et al., 1996), eqn (2) has been solved by using the di�erential quadrature
method (henceforth DQM), and some preliminary results have been given for clamped arches and
simply supported arches. The analysis was restricted to the fundamental frequency, and, moreover, the
boundary conditions were imposed by using the approximate double d method.

More recently, a new procedure was proposed for fourth-order equations by Wang et al. (1993) and
by Chen et al. (1997), which allow the exact satisfaction of all the four boundary conditions, and a

Fig. 1. The structural system under investigation.
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straight-forward generalization was proposed for the same systems (see De Rosa and Franciosi, 1998a),
even in the presence of nonclassical boundary conditions (De Rosa and Franciosi, 1998b).

In this paper the above-mentioned approach is extended to sixth-order equations, so enabling the
analysis of arbitrary boundary conditions and the calculation of the higher frequencies. Clamped arches,
double-hinged arches and cantilever arches are treated in detail, but the procedure remains valid for
other kinds of constraints, and the ®rst ten frequencies are calculated for various opening angles.

The numerical results are compared with two di�erent exact approaches, developed by Henrych
(1981) and Wassermann (1997), and with some other numerical methods such as ®nite elements and cell
discretization method (see Auciello and De Rosa, 1984).

It will be seen that the results are quite satisfactory, even for very deep arches, so con®rming the
e�ciency of DQM in comparison with other numerical techniques.

2. The structural system

The boundary conditions which will be considered in the following are expressed by:

A: Clamped end 4u � @u
@y
� @2u

@y2
� 0

B: Supported end 4u � @u
@y
� @3u

@y3
� 0

C: Free end 4M � T � N � 0 �4�
where M, T and N are the bending moment, the shear force and the normal force, respectively, and can
be expressed as:
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By assuming a solution of the form:

u�y, t� � u�y�f �t� �6�
with f �t� harmonic function with frequency o , the exact di�erential equation of motion becomes:
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with a similar expression for the approximate equation.
It is now convenient to map the physical domain �0, y0� onto the natural Gaussian domain �ÿ1, 1�, by
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means of the transformation:

x�y� � 2
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y
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�
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where x is called the natural coordinate.
It follows that the di�erential eqn (7) becomes:
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where:
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is the nondimensional frequency.
It is possible to de®ne the couple of di�erential operators:
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and:

M � 4
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where I is the identity operator.
Finally, the boundary value problem can be expressed as:

Lu � O2Mu �13�
with the appropriate six boundary conditions.

3. The discretization method

According to the DQM, the ®rst step toward the numerical solution of the above derived boundary
value problem is to divide the natural interval into n segments de®ned by means of n� 1 points located
at the abscissae x1, x2, . . . , xn�1.

Then, the following set of �n� 11� nodal unknowns is de®ned:
dT � �u1, u 01, u 001 , u 0001 , u 00001 , u 000001 , u2, . . . , u 0n�1, u

00
n�1, u

000
n�1, u

0000
n�1, u

00000
n�1
	 �14�

and the displacement u�x� of the beam is approximated as:

u�x� � aaaC �
Xn�11
i�1

aiCi �15�

where aa is a row vector of monomials, and C is a column vector of Lagrangian coordinates.
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Two choices of monomials arise quite naturally from the discretization procedure, i.e. ai � xiÿ1 and
ai � Tiÿ1�x�, where Ti�x� is the Chebyshev polynomials of the ®rst kind (see Bert and Malik, 1996).

In the ®rst case the sampling points are uniformly distributed along the natural interval:

xi �
2�iÿ 1� ÿ n

n
; i � 1, 2, . . . , n� 1 �16�

In the second case the sampling points will be conveniently located at the so-called Gauss±Lobatto±
Chebyshev points:

xi � ÿcos

�
p�iÿ 1�

n

�
; i � 1, 2, . . . , n� 1 �17�

From eqn (15) it is easily seen that:

u�i��x� � aaa�i�C; i � 1, . . . , 5 �18�

and therefore:

d �
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..

.
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C � N0C �19�

Following the same approach as in Chen et al. (1997), we de®ne the weighting coe�cients of the ®rst
sixth derivatives, as follows:

A �N 00Nÿ10 ; B � AA; C � AAA

D �AAAA; E � AAAAA; F � AAAAAA �20�

This discretized version of eqn (13) is given by:
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where the matrices L and M are the discretized version of the di�erential operators L and M:

Lij � 64

y60
Fij � 32

y40
Dij � 4

y20
Bij i, j � 1, 2, . . . , n� 11 �22�

Mij � 4

y20
Bij ÿ dij i, j � 1, 2, . . . , n� 11 �23�

where dij is the well-known Kronecker operator, and should be neglected if the approximate solution
has to be used.

4. The boundary conditions

Let us consider ®rst the clamped arch, for which the six boundary conditions are expressed as:
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In order to impose these conditions, it is convenient to interchange the rows (and columns) (n + 6),
(n+ 7) and (n + 8) of the matrices L and M with the fourth, ®fth and sixth rows (and columns), so
that it is possible to write:

M.A. De Rosa, C. Franciosi / International Journal of Solids and Structures 37 (2000) 1103±11171108



�
Lpp Lpa

Lap Laa

��
vp

va

�
� O2

�
Mpp Mpa

Map Maa

��
vp

va

�
�25�

where vp is the vector of the passive coordinates:

vT
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and va is the vector of the active coordinates:
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satis®es exactly all the boundary conditions:
Moreover, the above derived system can be solved very easily, because it su�ces to calculate the

eigenvalues of the reduced system:

Laavp � O2Maava �29�
The hinged-hinged arch is de®ned by the boundary conditions:
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and can be treated quite similarly to the clamped case.
In fact, the passive coordinates are now given by:

vT
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whereas the vector of the active coordinates is equal to:
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Therefore, the rows (and columns) �n� 6�, �n� 7� and �n� 9� of the matrices L and M should be
interchanged with the third, ®fth and sixth rows (and columns).

Even in this case it su�ces to solve the reduced system (29) of order n + 5.
The cantilever arch poses some additional problem, due to the presence of the eigenvalue in the

boundary conditions. Actually, the clamped-free arch is de®ned by [see eqn (5)]:
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so that it seems convenient to choose the following passive coordinates:
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and consequently:
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Rows (and columns) (n + 7), (n + 8) and (n + 11) of the matrices L and M should be interchanged
with the fourth, ®fth and sixth rows (and columns). In addition, (see eqn (25)) matrix Lpp will be given
by the identity matrix, as before, but matrix Lpa will contain the nonzero terms:

Lpa�4, n� 9� � 4

y20
; Lpa�5, n� 10� � 4

y20
; Lpa�6, n� 9� � y20

4
�38�

and the matrix Mpp will contain the single nonzero term:

Mpp�6, 4� � y40
16

�39�

The simplest way to solve the resulting system seems to invert the complete �n� 11, n� 11� L matrix
and to ®nd the eigenvalues of the matrix Lÿ1M. After disregarding the zero eigenvalues, the frequencies
can be found as the inverse of the eigenvalues.

5. Numerical results

A small Mathematica notebook was written (see Wolfram, 1991), following closely the above
developed theory. All the numerical approximations were ruled out until the eigenvalues calculations, so
minimizing the potential source of numerical instabilities.

Table 1

Convergence study for a cantilever circular arch with opening angle y0 � 1808. Exact
theory

O2 n � 5 n � 10 n � 15 n � 20

O2
1 0.4351587 0.4351653 0.4351653 0.4351653

O2
2 1.3749781 1.3749865 1.3749865 1.3749865

O2
3 4.7085858 4.7090534 4.7090534 4.7090534

O2
4 10.459782 10.515076 10.515099 10.515099

O2
5 18.391839 18.392165 18.392166

O2
6 28.374614 28.334995 28.335013

O2
7 40.456956 40.292906 40.292191

O2
8 52.153273 54.278495 54.266250

O2
9 70.102498 70.245294

O2
10 87.397703 88.210740
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In order to check the exactness of the proposed approach, and the convergence rate of the method, let
us consider a cantilever arch with opening angle y0 � p. In Table 1 the ®rst nondimensional frequencies
are reported, using the monomials ai � xiÿ1 and four di�erent discretization levels. In the ®rst column
the arch was divided into n � 5 segments, identi®ed by n� 1 � 6 equally spaced points. Consequently,
an eigenvalue problem of order n� 11 � 16 has been solved. In the other columns, the arch has been
divided into 10, 15 and 20 segments, respectively.

As can be seen, the ®rst three frequencies are well approximated even for the coarse discretization,

Table 2

Shallow clamped arches. Approximate theory

O2 y0=208 y0=408 y0=808

Henrych DQM Henrych DQM Henrych DQM

O2
1 505.404 505.404 125.792 125.792 30.894 30.894

O2
2 910.100 910.100 226.910 226.910 56.114 56.114

O2
3 1639.391 1639.391 409.204 409.204 101.658 101.658

O2
4 2374.823 2374.823 593.043 593.043 147.598 147.598

O2
5 3421.348 3421.348 854.661 854.661 219.989 219.989

O2
6 4483.458 4483.458 1120.178 1120.178 279.358 279.358

O2
7 5851.325 5851.321 1462.137 1462.136 364.841 364.840

O2
8 7238.872 7239.000 1809.018 1809.050 451.555 451.563

O2
9 8929.311 8931.596 2231.623 2232.194 557.201 557.344

O2
10 10,641.755 10,616.440 2659.730 2653.402 664.224 662.642

Table 3

Deep clamped arches. Approximate theory

O2 y0=1208 y0=1608 y0=1808

Henrych DQM Henrych DQM DQM

O2
1 13.328 13.3281 7.190 7.18982 5.53832

O2
2 24.488 24.4888 13.423 13.4234 10.4393

O2
3 44.707 44.7068 24.775 24.7755 19.3980

O2
4 65.109 65.1089 36.239 36.2388 28.4488

O2
5 94.161 94.1614 52.572 52.5723 41.3501

O2
6 123.651 123.651 69.154 69.1543 54.4489

O2
7 161.638 161.638 90.517 90.517 71.3258

O2
8 200.173 200.177 112.189 112.191 88.4496

O2
9 247.123 247.187 138.596 138.632 109.339

O2
10 294.686 293.983 165.348 164.952 130.135
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and the ®rst ®ve frequencies remain unchanged for the two ®nest discretization levels. In the following,
all the examples will be given for n � 20, even because the computational e�ort is negligible.

In Tables 2±5 the clamped arches are examined. More precisely, Tables 2 and 3 refer to the
approximate theory, whereas Tables 4 and 5 contain the frequencies as given by the exact theory. It is
worth noting that the di�erence between these two approaches reduces to neglect the identity operator
in eqn (12), or, equivalently, the Kronecker delta in eqn (23).

The ®rst ten nondimensional free vibration frequencies were calculated for six di�erent opening

Table 4

Shallow clamped arches. Exact theory

O2 y0=208 y0=408 y0=1808

Henrych DQM Henrych DQM Henrych DQM

O2
1 504.71254 503.54975 125.13412 123.97643 30.35434 29.21752

O2
2 910.35841 909.14513 227.17462 225.96257 56.40168 55.19468

O2
3 1638.49717 1637.2585 408.34864 407.11089 100.93967 99.70548

O2
4 2375.04899 2373.7926 593.27251 592.01656 147.84397 146.58936

O2
5 3420.37593 3419.10786 853.73153 852.46392 212.21124 210.94480

O2
6 4482.39181 1119.11574 278.31116

O2
7 5849.02420 1459.88596 362.75072

O2
8 7237.91268 1807.96683 450.49406

O2
9 8929.26520 2229.91209 555.22808

O2
10 10,615.3320 2652.29756 661.55269

Table 5

Deep clamped arches. Exact theory

O2 y0=1208 y0=1608 y0=1808

Henrych DQM Henrych DQM Archer DQM

O2
1 12.94860 11.84758 6.97826 5.927444 4.3841 4.384430

O2
2 24.81030 23.61261 13.78714 12.60396 9.651897

O2
3 44.16960 42.94082 24.42701 23.20534 17.92179

O2
4 65.38026 64.12795 36.54238 35.29352 27.52389

O2
5 93.57901 92.31426 52.18717 50.92456 39.79536

O2
6 122.62793 68.16142 53.47322

O2
7 159.75261 88.83522 69.73749

O2
8 199.13032 111.17408 87.44824

O2
9 245.28043 136.93164 107.73308

O2
10 292.91630 163.91439 129.11257
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angles, from y0 � 208 to y0 � 1808, and the results are compared, wherever possible, with the
eigenvalues reported by Henrych (1981).

It is possible to draw the following conclusions:

. for the approximate theory, the discrepancies between the Henrych values and the DQM results are
negligible, even for the higher frequencies;

. for the exact theory, the agreement is less satisfactory. We suspect that the numerical approximate
procedure used in Henrych (1981), p. 185 was not precise enough in calculating the roots of the

Table 6

Shallow two-hinged arches. Approximate theory

O2 y0=208 y0=408 y0=808

Henrych DQM Henrych DQM Henrych DQM

O2
1 323.000 323.000 80.000 80.000 19.250 19.250

O2
2 690.898 690.898 172.005 172.005 42.283 42.283

O2
3 1295.000 1295.000 323.000 323.000 80.000 180.000

O2
4 1988.835 1988.835 496.470 496.470 123.379 123.379

O2
5 2915.000 2915.000 728.000 728.000 181.250 181.250

O2
6 3933.560 3933.559 982.646 982.646 244.917 244.917

O2
7 5183.000 5182.980 1295.000 1294.995 323.000 322.999

O2
8 6525.941 6526.645 1630.739 1630.915 406.938 406.982

O2
9 8099.000 8106.193 2024.000 2025.799 505.250 505.700

O2
10 9766.176 9685.260 2440.797 2420.5627 609.452 604.388

Table 7

Deep two-hinged arches. Approximate theory

O2 y0=1208 y0=1608 y0=1808

Henrych DQM Henrych DQM DQM

O2
1 8.000 8.000 4.063 4.063 3.000

O2
2 18.261 18.261 9.855 9.855 7.588

O2
3 35.000 35.000 19.250 19.250 15.000

O2
4 54.288 54.288 30.107 30.107 23.582

O2
5 80.000 80.000 44.563 44.563 35.000

O2
6 108.301 108.301 60.485 60.485 47.583

O2
7 143.000 142.999 80.000 80.000 63.000

O2
8 180.309 180.328 100.988 100.999 79.593

O2
9 224.000 224.200 125.563 125.676 99.090

O2
10 270.314 268.060 151.615 150.345 118.580
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frequency equations. In fact, the fundamental frequency of the semicircular arch (y0 � 1808) as given

by Archer (1960) agrees quite well with the DQM prediction. Other examples can be found in the

literature (see Kang et al., 1996; Nelson, 1962);

. a comparison between the frequencies given by the approximate theory and the frequencies predicted

by the exact theory shows that the errors grow with the deepness of the arch.

Moreover, the discrepancies seem to be larger than the relative errors given in Henrych (1981). Tables

Table 8

Shallow two-hinged arches. Exact theory

O2 y0=208 y0=408 y0=808

Henrych DQM Henrych DQM Henrych DQM

O2
1 322.84610 321.51482 79.88299 78.55804 19.26240 17.96407

O2
2 691.34784 690.04207 172.46258 171.15800 42.76714 41.46761

O2
3 1294.84289 1293.51005 322.87042 321.53908 79.96697 78.64105

O2
4 1989.30118 1987.97806 496.94001 495.61730 123.86315 122.54186

O2
5 2914.84270 2913.50952 727.86936 726.53690 181.21200 179.88186

O2
6 3932.70542 981.79510 244.0783

O2
7 5181.48967 1293.5317 321.6289

O2
8 6525.79373 1630.0663 406.1437

O2
9 8104.68636 2024.3199 504.3162

O2
10 9684.45635 2419.7613 603.5950

Table 9

Deep two-hinged arches. Exact theory

O2 y0=1208 y0=1608 y0=1808

Henrych DQM Henrych DQM Wasserman DQM

O2
1 8.17865 6.92676 4.27735 3.21790 2.267 2.26674

O2
2 18.78599 17.49631 10.42841 9.15470 6.9233

O2
3 35.09216 33.77403 19.47019 18.16166 13.9777

O2
4 54.79465 53.47580 30.64156 29.32637 22.8196

O2
5 80.07961 78.75260 44.75928 43.43584 33.9295

O2
6 107.47993 59.68744 46.7979

O2
7 141.74693 78.86248 61.9154

O2
8 179.50481 100.19542 78.8002

O2
9 222.93466 124.52468 97.9907

O2
10 267.27878 149.57948 117.824
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6±9 contain the ®rst frequencies of the two-hinged arch, in the same order as described for the clamped
case. The same conclusions can also be drawn.

Finally, the cantilever arch is examined in Tables 10±12. No comparison is made for the exact theory,
because the higher frequencies are not reported elsewhere, and the fundamental frequency agrees
completely with the exact eigenvalue.

If the opening angle y0 exceeds p, then, strictly speaking, we are not examining `circular arches', but
`circular ring segments'. Nevertheless, the di�erential quadrature method can treat such systems without
any signi®cant di�erence.

As an example, the ®rst ®ve frequencies for some clamped, two-hinged and cantilever ring segments

Table 10

Shallow cantilever arches. Approximate theory

O2 y0=208 y0=408 y0=808

Henrych DQM Henrych DQM Henrych DQM

O2
1 29.101 29.101 7.462 7.462 2.064 2.064

O2
2 180.235 180.235 44.611 44.611 10.721 10.721

O2
3 505.606 505.606 125.845 125.845 30.910 30.910

O2
4 991.426 991.426 247.243 247.243 61.200 61.200

O2
5 1639.392 1639.392 409.204 409.204 101.658 101.658

O2
6 2449.366 2449.366 611.678 611.678 152.257 152.257

O2
7 3421.348 3421.348 854.661 854.661 212.989 212.989

O2
8 4555.335 4555.354 1138.147 1138.152 283.851 283.852

O2
9 5851.325 5851.237 1462.137 1462.115 364.841 364.835

O2
10 7309.317 7304.265 1826.630 1825.366 455.958 455.641

Table 11

Deep cantilever arches. Approximate theory

O2 y0=1208 y0=1608 y0=1808

Henrych DQM Henrych DQM DQM

O2
1 1.084 1.084 0.766 0.766 0.6909

O2
2 4.470 4.470 2.315 2.315 1.7489

O2
3 13.337 13.337 7.197 7.197 5.5458

O2
4 26.750 26.750 14.696 14.696 11.4455

O2
5 44.707 44.707 24.775 24.775 19.3980

O2
6 67.180 67.180 37.404 37.404 29.3694

O2
7 94.161 94.161 52.572 52.572 41.3501

O2
8 125.648 125.649 70.277 70.278 55.3366

O2
9 161.638 161.635 90.517 90.516 71.3247

O2
10 202.130 201.989 113.290 113.210 89.2544
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are reported in Table 13. Some comparisons can be performed with the fundamental frequencies given
in Kang et al. (1996), Archer (1960), Nelson (1962) for clamped and two-hinged arches, and the
agreement is always noticeable.

The very small fundamental frequency of the simply supported complete ring should obviously be
zero, but some unavoidable numerical approximation caused this negligible inaccuracy.

Table 13

Ring sectors for clamped arches, two-hinged arches and cantilever arches

O2 y0 � 2408 y0 � 2708 y0=3308 y0=3608

O2
1 Clamped 1.98249 1.39493 0.74408 0.56642

2-hinged 0.81792 0.47425 0.10129 6:3� 10ÿ9

Cantilever 0.28558 0.24743 0.20429 0.19244

O2
2 Clamped 4.84947 3.58518 2.06358 1.59520

2-hinged 3.30936 2.36576 1.24164 0.90074

Cantilever 0.70139 0.54227 0.36571 0.31589

O2
3 Clamped 9.32007 7.04140 4.26118 3.38459

2-hinged 7.15772 5.34885 3.14174 2.44660

Cantilever 2.25392 1.63160 0.91122 0.70006

O2
4 Clamped 14.7627 11.3383 7.10834 5.75492

2-hinged 12.1340 9.26743 5.72821 4.59667

Cantilever 5.38323 4.02917 2.38964 1.87955

O2
5 Clamped 21.5536 16.6663 10.6266 8.68973

2-hinged 18.3264 14.1386 8.95660 7.29296

Cantilever 9.73422 7.42214 4.58007 3.67660

Table 12

Cantilever arches. Exact theory

O2 y0 � 208 y0 � 408 y0=808 y0=1208 y0=1608 y0=1808

O2
1 28.9274 7.2857 1.8763 0.87618 0.52815 0.435165

O2
2 178.3529 42.8914 9.4711 3.66368 1.82747 1.37499

O2
3 503.5454 123.9252 29.3702 12.13756 6.256133 4.70905

O2
4 989.2592 245.2343 59.5971 25.48599 13.67251 10.5151

O2
5 1637.1669 407.1414 100.0053 43.38528 23.68263 18.3922

O2
6 2447.1050 609.5860 150.5844 65.83910 36.28622 28.3350

O2
7 3419.0618 852.5459 211.2980 92.80177 51.43305 40.2922

O2
8 4553.0487 1136.0221 282.1508 124.27967 69.127454 54.2662

O2
9 5848.9259 1459.9801 363.1295 160.26047 89.357339 70.2453

O2
10 7302.1479 1823.4022 454.0499 200.68549 112.09712 88.2107

M.A. De Rosa, C. Franciosi / International Journal of Solids and Structures 37 (2000) 1103±11171116



6. Conclusions

The dynamic analysis of circular arches in the presence of arbitrary constraints at the ends has been
conducted by using a version of the di�erential quadrature method in which all the sixth boundary
conditions can be satis®ed exactly.

It is shown that the cantilever arch, where the eigenvalue appears also in the boundary conditions,
can be studied without additional e�orts.

Numerical examples and comparisons for arches and ring segments show that the DQM behaves very
satisfactorily for every value of the opening angle, and a reduced number of Lagrangian coordinates
allow the calculation of the higher frequencies.

Finally, it can be noted that the computational e�ort is greatly reduced by using a symbolic software
(in our case, Mathematica), which also eliminated any numerical instability problems.
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